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Abstract
Strain changes the band structure of semiconductors. We use x-ray absorption spectroscopy to
study the change in the density of conduction band (CB) states when silicon is uniaxially
strained along the [1 0 0] and [1 1 0] directions. High stress can be applied to silicon
nanomembranes, because their thinness allows high levels of strain without fracture.
Strain-induced changes in both the sixfold degenerate � valleys and the eightfold degenerate L
valleys are determined quantitatively. The uniaxial deformation potentials of both � and L
valleys are directly extracted using a strain tensor appropriate to the boundary conditions, i.e.,
confinement in the plane in the direction orthogonal to the straining direction, which
correspond to those of strained CMOS in commercial applications. The experimentally
determined deformation potentials match the theoretical predictions well. We predict electron
mobility enhancement created by strain-induced CB modifications.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the search for routes to improve the performance of
Si-based electronic devices, strain has been introduced into Si
technology as a means of enhancing charge carrier mobility.
Utilizing uniaxial strain in modern low-dimensional electronic
devices is now common, and uniaxially strained Si has emerged
as the next scaling vector in logic technologies [1].

Strain in general increases the charge carrier mobility
in Si(0 0 1). In-plane biaxial tensile (out-of-plane uniaxial
compressive) strain removes the degeneracy in the four
in-plane valleys (�4) and the two out-of-plane valleys (�2)

of the conduction band minimum (CBM) by splitting them in
energy [2]. The lower energy of the �2 valleys means that they

4 Current address: Synchrotron Light Research Institute, Nakhon Ratchasima
30000, Thailand.
5 Current address: Institute for Advanced Study, Tsinghua University, Beijing
10084, People’s Republic of China.

are preferentially occupied by electrons. The electron mobility
is enhanced via increased population in this �2 conduction
band (CB) valley. Simulations by others have investigated the
effect of biaxial strain on CB and valence band (VB) structures
[3], including changes in the effective mass [3, 4], to explain
how the mobility of electrons and holes changes. The electron
mobility in biaxially strained Si (0 0 1) improves partially via
a higher fraction of in-plane electrons with lower effective
masses (m∗) and a lower fraction of out-of-plane electrons
with higher effective mass. The electron redistribution and
average effective-mass reduction by strain are only part of the
mobility enhancement [5]. Electron scattering is also reduced
by the CBM splitting, because of the lower rate of inter-valley
phonon scattering between �2 and �4 valleys [4].

Uniaxial strain enhances transport properties for both
electrons and holes. Uniaxial strain provides enhancement
of the electron mobility that is as large as or larger than
that for biaxial strain. For holes, uniaxial strain provides
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a low channel-direction in-plane conductivity mass, a large
out-of-plane confinement mass and a high in-plane density
of states of the ground state hole sub-band. All these band
changes are important and allow an extremely significant ∼4×
enhancement in the hole mobility [6]. Thus, in MOSFET
design it is common to grow SiGe alloy from the side in
pFETs to compress the Si channel (SiGe having a larger lattice
constant than Si) to boost the hole mobility, and to grow a
silicon nitride capping film for nFETs to create tensile strain
in the channel to enhance the electron mobility [7, 8].

We use x-ray absorption spectroscopy (XAS) with
synchrotron radiation to determine the influence of uniaxial
tensile strain in Si(0 0 1) on the CB structure in a configuration
that mimics industrial practice, in that the structure in the
direction in-plane but orthogonal to the strain direction
is confined [9–12], but in the direction out of plane the
lattice can contract in response to the uniaxial tensile stress.
The advantage of direct measurements is that there are
no parameters that require assumptions. We use Si(0 0 1)
nanomembranes (SiNM) less than 100 nm thick on a host that
is flexible. The thinness of the membrane relative to the host
allows us to introduce a considerable strain in the Si. From the
strain dependence of the XAS spectra, we extract the sub-band
splitting for � and L valleys and use the values of sub-band
splitting to estimate changes in mobility with strain.

It is important to note that the boundary conditions under
which strain is applied significantly influence the interpretation
of the measurements. In our past work using XAS on strained-
Si nanomembranes, we introduced in-plane biaxial strain via
growth: the boundary conditions laterally are ‘free’, and by
Poisson’s ratio we have uniaxial compressive strain normal to
the nanomembrane [13]. Clearly the boundary conditions for
the industrial approaches described above imply confinement
of the lattice in lateral directions orthogonal to the uniaxial-
strain direction [8, 11, 12]. This means of introducing strain is
different from putting uniaxial stress on a freestanding bar.
When we apply a tensile force on both ends of a square
bar, in the directions perpendicular to the stress direction
the dimensions shrink following Poisson’s ratio [14]. In the
current measurements we therefore modify the strain tensor to
be appropriate for these constraints.

Prior experimental studies involving uniaxial strain in
Si(0 0 1) were indirect in the sense that they measured charge
transport as a function of strain [15–19], and from these
measurements deduced deformation potentials using a number
of assumptions, including the nature of the strain tensor. There
are two ways to fabricate a FET device and measure the
mobility. One is to build the FET on a bulk-Si wafer and then
bend the wafer. In this configuration, the lattice is unconfined
in all directions; therefore free-boundary conditions are
appropriate and the proper strain tensor has no confined
component [20]. However, when the in-plane orthogonal
dimensions are confined, such as in a SiN-capped tensilely
strained channel, the interpretation requires a modification of
the strain tensor [12]. Our experiments require a modified
stress tensor.

Theoretical values of deformation potentials for different
(but not all) features of the band structure of Si have existed

for some time. They are obtained with first-principles and
pseudopotential methods [3, 4, 21–23]. In our past work [2, 13]
on biaxial strain, the extracted deformation potentials fit theory
well, as described later. We will show that deformation
potentials extracted for uniaxial strain with a proper strain
tensor also fit theory well. From that agreement we can be
confident in estimating mobility changes with strain.

Specifically, in the current measurements, when we strain
a (0 0 1) SiNM uniaxially along the [1 0 0] direction, the
in-plane [0 1 0] direction is confined by the substrate on which
the NM is bonded, but the out-of-plane [0 0 1] direction is
free to move. Because NM transfer allows control of the
orientation of the SiNM, we can also strain the membrane along
[1 1 0] with the [1̄ 1 0] direction confined and the out-of-plane
direction ([0 0 1]) free to move. We measure the changing
positions of the �, L1 and L3 valleys under these conditions,
for strains as high as 1.5%, values that can be achieved without
damage to the NM.

We find that, under [1 0 0] uniaxial strain with the lattice
confined in the in-plane orthogonal to the strain direction, the
�6 valley splits into three sets of twofold �2 valleys, but that
there is no effect on L valleys. For [1 1 0] uniaxial strain, the
�6 valley splits into �2 and �4 valleys, and L1 and L3 valleys
both split into two sets of fourfold degenerate L1 and L3 valleys.
The deformation potentials for � and L1 valleys extracted from
the data match theoretical predictions [24–26]. The L3 valley
deformation potential is determined for the first time. We
extract the mobility enhancement for [1 0 0] uniaxial strain;
it is higher compared with that for biaxially strained Si(0 0 1)
and higher than predictions using a strain tensor that has not
been modified for the confined-lattice boundary conditions.

2. Experimental

Because they are strainable to a much greater degree than
bulk materials, we use silicon nanomembranes, very thin,
single-crystal sheets that are flexible, conformable, and readily
transferable and bondable. Fabrication of such membranes
has been described elsewhere [27–29]. We transfer and bond
the SiNM to a flexible host substrate that is considerably
thicker than the NM, and is ultrahigh-vacuum compatible,
here a molybdenum (Mo) sheet. Mo additionally can survive
hydrofluoric acid (HF), important as one step of processing
involves etching in HF. We use wet transfer of a SiNM
released from silicon-on-insulator (SOI) by selectively etching
the buried oxide (BOX) with HF, which is then slowly replaced
by deionized water. We pick the SiNM up from the deionized
water, with a pre-polished Mo foil (∼130 µm thick) and bond
it to the Mo via rapid thermal annealing under nitrogen gas
ambient at a temperature of 350 ◦C for 5 min. To deform
the host substrate in the appropriate manner, a four-point
load is applied [30], as shown in figure 1(a). The loading
jig introduces uniaxial elastic strain in the SiNM. Because
its thickness is only of the order of tens of nanometres, the
SiNM can be highly strained without cracking or generating
dislocations, something that is easy to see from simple strain
balance and critical-thickness considerations [27–29]. As the
Mo substrate only deforms along the bending direction, the
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Figure 1. Schematic diagram of the four-point bending technique to
generate uniaxial strain in Si(0 0 1) nanomembranes. (a) Without
strain. (b) and (c) With uniaxial strain along [1 1 0] and [1 0 0],
respectively. The coordinates x, y and z are defined as the [1 0 0],
[0 1 0] and [0 0 1] directions.

SiNM will stretch along that direction and shrink in the out-
of-plane direction, without change in the in-plane direction
orthogonal to the bending direction. Because the membrane
is so thin compared with Mo substrate, its change in radius
of curvature is negligible and strain induced by membrane
bending can be ignored. The deformation of the Mo substrate
is plastic and thus irreversible, so we cannot cycle the system
but must start with a new substrate once we have reached the
maximum strain for a given membrane.

The degree of strain in a SiNM can be well controlled
by the deformation of the Mo substrate, and can be measured
using ultraviolet (UV) Raman spectroscopy [31]. Because the
penetration depth of UV light (325 nm in this experiment) is
only 8–10 nm, the Raman measurement is easily performed
on thin Si sheets. In-plane tensile strain moves the Si Raman
line to lower wavenumber, while compressive strain has the
opposite effect. In this experiment, we used a 4 × 4 matrix
point-selection method on a large area (1 × 1 mm2) in each
sample. We found that the strain variation was in the range of
±0.2%. Strains mentioned in this paper all indicate the strain
along the stressing direction. Strains were also confirmed with
a sensitive strain gauge.

We use XAS with total-electron-yield detection to
characterize the CB structure modification, including the �, L1

and L3 valleys. Because XAS in this mode is very sensitive to
the near-surface region, we cleaned the surface to remove the

native oxide by dipping all samples into HF just prior to transfer
into the ultrahigh-vacuum chamber. The hydrogen-terminated
surface can prevent oxidation for hours [32]; the transfer of the
sample into vacuum occurs in less than 5 min. The Variable-
Line-Spacing Plane Grating Monochromator beam line at
the University of Wisconsin Synchrotron Radiation Center
provided photons with 10 meV energy resolution in the energy
range of interest (99.5–106 eV). An unstrained Si wafer with
a hydrogen-terminated surface was used as reference. Before
and after each sample was measured, we took reference data
three times to eliminate any photon energy drift. The spectra
were normalized by the incident photon intensity, which was
obtained from the photocurrent of a gold mesh in front of
the sample, and averaged to improve the signal-to-noise ratio.
Derivatives of the spectra were used to determine the onset
of the absorption at each valley, which appears as a peak in
the derivative [2]. Representative spectra from an Si wafer
and two NMs with different uniaxial strains are shown in
figure 2(a). Figure 2(b) shows the electronic band structure
of silicon schematically.

3. Results and discussion

XAS has proven to be effective for measuring the CB structure
in semiconductors [13], with most attention paid to the
absorption edge, which is the position of the CBM relative to
the core level [33]. In recent work, we used XAS to measure
the influence of strain on the CB structure in biaxially strained
Si(0 0 1) NMs [2, 13]. We characterized not only the splitting
of the CBM valley and its shift with strain but also the shifts
of higher-energy valleys with increasing strain.

When uniaxial strain is created along the [1 1 0] direction
in a Si(0 0 1)NM by bending the host substrate, the in-plane
[1̄ 1 0] direction (orthogonal to the strain direction) will be
confined by the substrate, but in the out-of-plane [0 0 1]
direction the crystal is free to move (figure 1(b)). As
expected, we find no strain in the confined direction, which
we confirmed using a sensitive strain gauge. The strain tensor
for [1 1 0] uniaxial strain in the Si (0 0 1) nanomembrane can
be expressed as

↔
ε[1 1 0] =




1
2ε‖ 1

2ε‖ 0
1
2ε‖ 1

2ε‖ 0

0 0 ε⊥


 =




1
2ε 1

2ε 0
1
2ε 1

2ε 0

0 0 −c12

c11
ε


 , (1)

where ε‖ is the strain along [1 1 0], ε⊥ is the strain normal to
the surface, along [0 0 1], and ε is measured in this experiment.
The strain tensor for uniaxial strain along [1 0 0] (figure 1(c))
can be expressed as

↔
ε[1 0 0] =


ε‖ 0 0

0 0 0
0 0 ε⊥


 =




ε 0 0
0 0 0

0 0 −c12

c11
ε


 , (2)

where ε‖ is the strain along [1 0 0] and ε⊥ is the strain normal
to the surface (along [0 0 1]).

Strain lowers the crystal symmetry and thus lifts the
symmetry-determined band degeneracies according to the
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Figure 2. Results from XAS for uniaxial strain along [1 1 0] and [1 0 0]. (a) First derivative of XAS spectra for fully relaxed bulk Si and
from a Si(0 0 1) nanomembrane under [1 1 0] uniaxial tensile strain, for strains of 0.66% and 1.51%. Peaks correspond to optical transitions
from the Si 2p core level to CB valleys. They come in pairs because of the spin–orbit splitting of the 2p level. The inset in (a) shows the Si
band structure including the sixfold degenerate CBM � and the eightfold degenerate L1 and L3 valleys. (b) Example of a fit to determine �
valley splitting for 0.55% strain along [1 0 0], corresponding to a pair of data points in (d). (c) Splitting of the � valley between �2 to �4 as
a function of uniaxial strain along [1 1 0] with structure confined in the [1 1̄ 0] direction. (d) Splitting of the � valley for uniaxial strain
along [1 0 0] with [0 1 0] confined. Squares and circles are for the splitting �I–�III and �II–�III. The insets in (c) and (d) show the energy
shifts from unstrained (US) to hydrostatic strain (HS) and the splittings induced by uniaxial strain. Dashed lines are guides to the eye.

linear deformation potential theory developed by Herring and
Vogt [34]. The shift of an individual CB valley (distinguished
by its direction in momentum space among the degenerate
valleys) follows the equation:

�Eijk = [�d
↔
1 + �u(âijk ⊗ âijk)] : ↔

ε, (3)

where �Eijk is the energy shift of an individual CB valley
sitting in the 〈ijk〉 direction, �d is the dilation deformation
potential, �u is the uniaxial deformation potential, âijk is a unit
vector along the direction of the valley ijk,

↔
1 is a unit tensor and

↔
ε is the strain tensor. âijk ⊗ âijk denotes a self-dyadic product
of âijk . Uniaxial strain leads to a splitting of CB minima that
are degenerate in the absence of strain. According to equations
(1)–(3), for uniaxial strain along [1 1 0], the sixfold degenerate
� valley evolves to two sets of sub-bands, �2 and �4. [1 0 0]

uniaxial strain splits the sixfold degenerate � valley into three
sets of �2 sub-bands, �I, �II, and �III.

According to deformation potential theory developed by
Bardeen and Shockley and equations (1)–(3) [35], the splitting
between �2 and �4 for uniaxial strain along [1 1 0] is

�E
[1 1 0]
� = �E

1 0 0,1̄ 0 0,0 1 0,0 1̄ 0
�4

− �E
0 0 1,0 0 1̄
�2

=
(

1

2
+

c12

c11

)
��

u · ε, (4)

where ε is the uniaxial strain,��
u is the uniaxial deformation

potential, and c11 and c12 are the compliance coefficients of
Si [36].

Uniaxial strain along [1 0 0] splits the CBM differently
compared with uniaxial strain along [1 1 0] or (0 0 1) biaxial
strain. Instead of two sets of sub-bands, uniaxial strain along
[1 0 0] with [0 1 0] confined will create three sets of sub-bands
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Figure 3. Influence of uniaxial strain along [1 1 0] on the L valleys
along 〈1 1 1〉. The open circles are data for the L1 valley splitting and
the solid squares for the L3 valley. The lines are guides to the eye.

with each set doubly degenerate, marked as �I, �II, and �III.
The energy splitting between each pair is

�E�I − �E�III = �E
1 0 0,1̄ 0 0
� − �E

0 0 1,0 0 1̄
�

=
(

1 +
c12

c11

)
��

u · ε, (5)

�E�II − �E�III = �E
0 1 0,0 1̄ 0
� − �E

0 0 1,0 0 1̄
�

= c12

c11
· ��

u · ε. (6)

To fit the experimental spectrum we use three equal-weight
peaks with the shape of the Si bulk spectrum, the procedure
described earlier. The fit to the [1 0 0] 0.55% strain data is
shown in figure 2(b).

When uniaxial strain is applied along the [1 1 0] direction,
the degeneracy of the eightfold L valley along 〈1 1 1〉 will be
lifted to two sets of fourfold degenerate valleys. We fit data
according to the instruction in [13] to determine the magnitude
of the splitting of � and L valleys. For uniaxial strain along
[1 0 0] the spectra for the � valleys are fitted by three 1/3-
intensity bulk-Si reference spectra. For uniaxial strain along
[1 1 0] the spectra for the � valleys are fitted by 1/3 and
2/3-intensity bulk reference spectra, while for the L valleys,
they are fit by 1/2-intensity bulk reference spectra [4, 24].
Figures 2(b) and (c) show the experimental results for the �

valley splitting for uniaxial strain along [1 1 0] and [1 0 0]. The
insets in these figures show the splittings schematically. L1 and
L3 valley splitting as a function of strain along [1 1 0] is shown
in figure 3.

The eightfold degenerate L valleys (L1 and L3) of Si,
along the 〈1 1 1〉 directions, will be affected if the coincident
symmetric structure changes with strain. Uniaxial tensile
strain along [1 0 0] with [0 1 0] confined has the same effect
on all 〈1 1 1〉 directions, thus, no degeneracy will be lifted.
However, [1 1 0] uniaxial strain (with [1 1̄ 0] confined) will lift
the degeneracy of the L1 valley from eightfold to two sets of
fourfold degenerate sub-bands: L1-1 and L1-2. The L3 valley

also splits. The splitting between L1-1 and L1-2 is

�EL1 = �E
1 1 1,1̄ 1̄ 1̄,1 1 1̄,1̄ 1̄ 1
L1

−�E
1 1̄ 1,1̄ 1 1̄,1 1̄ 1̄,1̄ 1 1
L1

= 2
3�L1

u · ε,
(7)

where �L1
u is the uniaxial deformation potential of the L1 valley.

For the L3 valley, the splitting can be expressed as

�EL3 = �E
1 1 1,1̄ 1̄ 1̄,1 1 1̄,1̄ 1̄ 1
L3

−�E
1 1̄ 1,1̄ 1 1̄,1 1̄ 1̄,1̄ 1 1
L3

= 2
3�L3

u · ε,
(8)

where �L3
u is defined as the uniaxial deformation potential of

the L3 valley.
From these theoretical expressions, the deformation

potentials of all valleys can be extracted, as summarized
in table 1. The agreement of experimentally determined
deformation potential constants of the � and L1 valleys with
theoretical predictions indicates the strain tensors modified to
account for the lattice confinement along the orthogonal in-
plane direction are appropriate. If we use the unmodified
strain tensors (the ones appropriate for the free boundary
conditions), strain along [0 0 1] will split the � valley to
fourfold and twofold degeneracy. Efforts to fit the XAS data
with this degeneracy do not produce as good fits as three sets
of twofold degenerate valleys. Also the deformation potentials
will deviate from the theoretical prediction. We therefore
have confidence to extract the uniaxial deformation potential
of L3 valley, �L3

u , for which there is no prior calculation or
measurement.

Using the valley splitting data in figure 2, we are able to
predict semi-quantitatively how uniaxial strain will influence
the electron mobility. In general, the influence of strain on
electron mobility has two origins: valley splitting and valley
deformation. On the one hand, when strain breaks the crystal
symmetry, the degeneracy of the six originally equivalent CBM
valleys along � directions will be partially removed, leading
to valley splitting. It forces electrons to re-populate the six
valleys and, in combination with the anisotropy of these valleys
between longitudinal and transverse directions, it influences
the overall electron mobility. Meanwhile, the valley splitting
will also influence the inter-valley scattering intensity. On the
other hand, strain may influence the valley shapes and in turn
changes the effective mass, the density of states, and the intra-
valley scattering intensity.

According to previous density functional theory (DFT)
calculations on biaxial-strain effects and pseudopotential
calculations on uniaxial-strain effects [4, 22, 37], within the
range of strain from 2% compressive to 2% tensile, the
dominant effect on mobility tuning is valley splitting, while
the valley shapes remain almost unchanged. Therefore, it is
reasonable to assume that the effective-mass tensor of each
valley is constant and to treat the electron mobility as a function
of valley splitting only. We calculate the electron mobility
within the relaxation time approximation as [37]

µxx =
∑

α
γα

e〈τα〉
mα

x

, (9)

where α runs over all the six � valleys, γα are the electron
population ratios for each of the valleys and 〈τα〉 and mα

x are
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Table 1. Comparison of deformation potentials extracted from XAS data of the valley splitting in Si(0 0 1) for uniaxial strain along the
[1 1 0] and [1 0 0] directions with theory and our earlier results for in-plane biaxial strain [2, 13] and one other direct measurement [40].
Different theory values from the same reference are obtained using different calculation methods. No theory or experiment exists for �

L3
u .

The ��
u values for uniaxial strain along [1 1 0] and along [1 0 0] should be and are, within error, the same. All quantities are in eV.

Theory Uniaxial strain Biaxial strain This work

��
u 9.0a, 8.79b, 9.01b, 8.6 ± 0.4c 8.3d 9.1 ± 0.2e, 8.5 ± 0.6f

�L1
u 15.9a, 13.85b, 15.1b, 16.14g, 18.0h 16.5d 18.1 ± 0.2e

�
L3
u 9.5 ± 0.9e

a Reference [25].
b Reference [26], using two methods.
c Reference [40], from low-temperature (77 K) indirect-exciton spectrum.
d Reference [13], from XAS data;
e with uniaxial strain along [1 1 0].
f with uniaxial strain along [1 0 0].
g Reference [23].
h Reference [22].

the average relaxation times and effective masses along the
given direction.

The average relaxation time 〈τα〉 is defined to be the
inverse of the thermal-averaged scattering rates as equation
(7) in [4] and is obtained in our methodology by simple
numerical integration. The individual scattering rates for
intra-valley and inter-valley electron–phonon scattering are
calculated following (3.47) and (3.74) in [38] under an elastic,
energy-equipartition and isotropic approximation. The model
has given good results for electron mobility of silicon under
strain [22]. The related parameters in these formulae are
chosen to be exactly the same as in [4]. Impurity scattering
and electron–electron scattering are neglected.

We point out that the calculated mobility greatly depends
on the parameters we use, e.g., average deformation potential,
phonon energy, etc. We use the deformation potentials
determined from XAS experiments. They agree for biaxial
strain and uniaxial strain (table 1). The uncertainty in
phonon energy becomes less important when the same set of
parameters is used throughout our calculations.

Because we focus on the effect of valley splitting on
electron mobility, our calculation can be used for both uniaxial
and biaxial strain. To that end, before calculating the
mobility in our scenario, we applied the above method to
calculate the in-plane and out-of-plane electron mobilities
under two different biaxial-strain conditions, as recently
studied experimentally in [13]. Because we are able to
reproduce the mobility of previous work [4], we believe that
our calculation is reliable. The calculated mobility is shown
in figure 4. We plot the in-plane mobility along the strain
direction (longitudinal) and orthogonal to the strain direction
(transverse), respectively.

There are interesting and potentially useful features in the
mobility associated with uniaxial strain. In figure 4(a), we
see that the red dashed line takes the form of a ‘mobility well’
instead of a ‘mobility step’, which is unique among the cases
we explore. Intuitively, this line should appear as a ‘reversal’
of the blue dotted line (which represents the mobility results
from [4] for biaxial strain), because in-plane biaxial tensile
strain generates an out-of-plane uniaxial compressive strain
(Poisson effect) if there is no constraint. In this sense, under

[1 0 0] uniaxial tensile strain, the transverse mobility should
stay at a low level and not increase. This would indeed be true if
we could maintain the degeneracy between the [0 1 0] oriented
� valleys and the [0 0 1] oriented � valleys. However, if these
valleys become even slightly different in energy, the picture
is dramatically changed. The mobility is sensitive to valley
splitting even of the order of tens of meV. In our experiment,
the substrate restricts relaxation of the silicon membrane along
[0 1 0] directions and thus three sets of twofold degenerate
valleys are obtained. The splitting between [0 1 0] valleys and
[0 0 1] valleys is approximately 30 meV per 1% strain. At
room temperature, the 30 meV difference will populate [0 0 1]
valleys with three times as many electrons as [0 1 0] valleys. As
a result, under [1 0 0] uniaxial tensile strain with confinement
along the orthogonal direction, [0 0 1] valleys quickly dominate
the transport with increasing tensile strain, and as a result the
transverse mobility goes up. We can see that the transverse
electron mobility, which is along [0 1 0] directions, is enhanced
also when a compressive strain is applied along [1 0 0]. The
electrons will prefer to occupy the [1 0 0] valleys because of
their lower energy.

When comparing uniaxial tensile strain along [1 0 0]
with the biaxial-tensile-strain case, we also need to change
our earlier impression that [1 0 0] uniaxial strain has less
enhancement than biaxial strain [10]. Here, as shown in
figure 4(a), at lower strain (0–1%), uniaxial tensile strain along
[1 0 0] has an effect on the longitudinal mobility improvement
equal to tensile biaxial strain. At higher tensile strain (>1%),
the [1 0 0] mobility actually exceeds the biaxial-tensile-strain
mobility.

In figure 4(b), we see that there is no difference between
the transverse and longitudinal mobilities (red dashed and
black curves overlap). This result is not surprising, because, if
we neglect the valley deformation, the effective masses along
the [1 1 0] and [1 1̄ 0] directions are always the same for each
� valley. The in-plane mobility is in fact almost isotropic
along any direction under this condition. The reason is that
the valleys along [1 0 0] and [0 1 0] are always degenerate
under [1 1 0] uniaxial tensile strain and thus the average in-
plane effective mass becomes isotropic. Comparing with the
mobility for biaxial tensile strain (dotted curve), the mobility
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Figure 4. Calculated mobility as a function of uniaxial strain and
comparison with our earlier work [4] for biaxial strain. (a) uniaxial
strain along [1 0 0] and (b) uniaxial strain along [1 1 0]. The solid
and dashed lines are for the longitudinal and transverse mobility.
The dotted lines are for biaxial strain (from [4]).

for strain along [1 1 0] is lower at low strain (0–1%) but higher
at higher strain (>1%). The general trend is consistent with
earlier studies [20], but the crossing point is different (0.6%
in [20] but 1% in this study).

In our calculation, we consider only the effect of valley
splitting on electron mobility. Band warping, which we do not
consider, induces an out-of-plane �2 transverse effective-mass
(mt) change, and the mobility can be further enhanced [39].
Mobility enhancement induced by strain in MOSFETs is more
complicated [20].

4. Conclusion

To summarize, we create uniaxial strain in Si nanomembranes
that is similar to the commercial MOSFET strained-channel
condition, i.e., the structure in the direction in plane but
orthogonal to the stressing direction is confined. We modify

the strain tensor to include the confined component instead
of using the strain tensor appropriate to the free-boundary
condition. Using this strain tensor, we extract the � and
L1 valley deformation potentials from our XAS data. They
match the theoretical predictions. The deformation potential
is also extracted for the L3 valley, for which no theory or
prior experiment of any sort exists. We find that under
our experimental conditions, tensile uniaxial strain always
enhances the in-plane electron mobility. For tensile strain in
Si(0 0 1) along [1 0 0], the mobility enhancement is equal to that
for biaxial strain at low strain but becomes greater at higher
strain. In addition, our calculations show that compressive
uniaxial strain along [1 0 0] can also be used to enhance the
transverse mobility. Finally, uniaxial strain along the [1 1 0]
direction, which tunes the in-plane mobility along all directions
simultaneously, enhances the electron mobility in a manner
similar to the effect of (0 0 1) biaxial strain.
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